Students learn the relationships created when two parallel lines are intersected by a transversal. They also study angle relationships in triangles.

Triangles

Parallel lines

- corresponding angles are equal:
 m∠1 = m∠3
- alternate interior angles are equal: $m\angle 2 = m\angle 3$
- same-side interior angles are supplementary: $m\angle 2 + m\angle 4 = 180^{\circ}$

Also shown in the above figures:

- vertical angles are equal: $m \angle 1 = m \angle 2$
- straight angles measure 180° : $m \angle 3 + m \angle 4 = 180^{\circ}$ and $m \angle 6 + m \angle 7 = 180^{\circ}$

In addition, an isosceles triangle, $\triangle ABC$, has BA = BC and $m \angle A = m \angle C$. An equilateral triangle, $\triangle GFH$, has GF = FH = HG and $m \angle G = m \angle F = m \angle H = 60^{\circ}$.

interior angles are supplementary:

• exterior angle equals sum of remote interior angles: $m \angle 6 = m \angle 8 + m \angle 9$

 $m \angle 7 + m \angle 8 + m \angle 9 = 180^{\circ}$

For more information, see the Math Notes boxes in Lessons 9.1.2, 9.1.3, and 9.1.4 of the *Core Connections, Course 3* text.

Example 1

Solve for x.

Use the Exterior Angle Theorem:

$$6x + 8^{\circ} = 49^{\circ} + 67^{\circ} \implies 6x^{\circ} = 108^{\circ} \implies x = \frac{108^{\circ}}{6} \implies x = 18^{\circ}$$

Example 2

Solve for *x*.

There are a number of relationships in this diagram. First, $\angle 1$ and the 127° angle are supplementary, so we know that $m\angle 1 + 127^\circ = 180^\circ$ so $m\angle 1 = 53^\circ$. Using the same idea, $m\angle 2 = 47^\circ$. Next, $m\angle 3 + 53^\circ + 47^\circ = 180^\circ$, so $m\angle 3 = 80^\circ$. Because angle 3 forms a vertical pair with the angle marked $7x + 3^\circ$, $80^\circ = 7x + 3^\circ$, so $x = 11^\circ$.

Example 3

Find the measure of the acute alternate interior angles. Parallel lines mean that alternate interior angles are equal, so $5x + 28^{\circ} = 2x + 46^{\circ} \implies 3x = 18^{\circ} \implies x = 6^{\circ}$. Use either algebraic angle measure: $2(6^{\circ}) + 46^{\circ} = 58^{\circ}$ for the measure of the acute angle.

Problems

Use the geometric properties you have learned to solve for x in each diagram and write the property you use in each case.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

21.

 $19. 18^{\circ}$ $5x + 36^{\circ}$

9*x*

Answers

- 1. 45°
- 2. 35°
- 3. 40°
- 4. 34°
- 5. 12.5°
- 6. 15°

- 7. 15°
- 8. 25°
- 9. 20°
- 10. 5°
- 11. 3°
- 12. $10\frac{2}{3}$ °

- 13. 7°
- 14. 2°
- 15. 7°
- 16. 25°
- 17. 81°
- 18. 7.5°

- 19. 9°
- 20. 7.5°
- 21. 7°
- 22. 15.6°
- 23. 26°
- 24. 2°

- 25. 40°
- 26. 65°
- 27. $7\frac{1}{6}$ °
- 28. 10°